Math Learning Center

FINANCE FORMULAS

Business Math

Variables

I: interest *r*: annual interest rate (given as a %) *m*: number of compounding periods per year *i*: interest rate per period (*i* = *r*/*m*) *t*: number of years *n*: total number of periods (*n* = *tm*)

Simple Interest

Interest I = Prt

Compound Interest

Periodic: $A = P(1+i)^n$

Continuous: $A = Pe^{rt}$

Effective Rate: $r_E = \left(1 + \frac{r}{m}\right)^m - 1$

Annuities

A sequence of equal payments made at equal periods of time is called an annuity.

Ordinary Annuity: the payments are made at the <i>end</i> of each period	
Future Value:	$S = R\left[\frac{(1+i)^n - 1}{i}\right]$
Present Value:	$P = R\left[\frac{1 - (1 + i)^{-n}}{i}\right]$

Annuity Due: the payments are made at the *beginning* of each period.

Future Value: $S = R \left[\frac{(1+i)^{n+1}-1}{i} \right] - R$

Present Value: $P = R + R \left[\frac{1 - (1+i)^{-(n-1)}}{i} \right]$

Amortization Payments: payments that are divided into equal amounts for the duration of the loan

$$R = \frac{P \cdot i}{1 - (1 + i)^{-n}}$$

- P: principal or present value (amount borrowed or deposited)
- A: future value of a lump sum
- **S**: future value of an annuity
- **n**: total periodic payments (in an annuity)
- **R**: the periodic payment in an annuity