LOGARITHMS

Basic I deas of Logs:

- **1**. $\log_b x$ is read as "log with base *b* of *x*"
- **2.** Common log (base 10): $\log_{10} x$ is equivalent to $\log x$
- **3.** Natural log (base *e*): $\log_e x$ is equivalent to $\ln x$
- 4. Logarithms are the inverses of exponentials (just like subtraction and addition).
- 5. $\log_b x = y$...is the same as... $x = b^y$ For example: $\log_3 \frac{1}{81} = -4$...is the same as... $3^{-4} = \frac{1}{81}$

Properties of Logarithms:

- 1. $\log_b x + \log_b y \leftrightarrow \log_b xy$ Example: $\log_3 4 + \log_3 6 \leftrightarrow \log_3 4 \cdot 6 = \log_3 24$ 2. $\log_b x \log_b y \leftrightarrow \log_b \frac{x}{y}$ Example: $\log_3 10 \log_3 5 \leftrightarrow \log_3 \frac{10}{5} = \log_3 2$ 3. $r \log_b x \leftrightarrow \log_b x^r$ Example: $2 \log_3 4 \leftrightarrow \log_3 4^2 = \log_3 16$ 4. $\log_b b^x = x$ Examples: $\cdot \ln e = 1$
 $\cdot \ln e^x = x$
 $\cdot \log_4 4^5 = 5$ 5. $b^{\log_b x} = x$ Examples: $\cdot e^{\ln x} = x$
 $\cdot 5^{\log_5 9} = 9$
- **6.** $\log_b 1 = 0$ **Example:** $\log_7 1 = 0$

Change of Base Formula:

Changes logarithms with other bases to logarithms with a common base, such as base *e* or base 10.

$\log_{b} x = \frac{\log_{B} x}{\log_{B} b}$	Example: $\log_3 4 = \frac{\log_{10} 4}{\log_{10} 3} = 1.2618$.
	Example: $\log_3 4 = \frac{\ln 4}{\ln 3} = 1.2618 \dots$

Solving Equations Containing Logarithms or Exponents:

1. An equation that has a **log** on one side and some expression on the other side can be rewritten without the **log**. **Example:** $\log_3(x+4) = 2 \iff x+4 = 3^2$

Die: $\log_3(x+4) = 2 \iff x+4 = 3$ x+4 = 9x = 5

x = 5**2.** An equation that has a **log** with the same base on both sides can be rewritten without

the log. Example: $\log_3(3x + 1) = \log_3(x + 9) \iff 3x + 1 = x + 9$ 2x = 8x = 4

3. An equation that has just exponential expressions where the bases are the same can be rewritten without the bases. $\mathbf{b}^{\mathbf{x}} = \mathbf{b}^{\mathbf{y}} \leftrightarrow \mathbf{x} = \mathbf{y}$

Example:
$$5^{2x-10} = 5^2 \iff 2x - 10 = 2$$

 $2x = 12$
 $x = 6$

4. An equation that contains exponential expressions but has different bases on each side of the equation, then the **log** (or **In**) of each side of the equation is taken and then simplified.

Example: $3^{2x-10} = 5 \quad \leftrightarrow \quad \log 3^{2x-10} = \log 5 \quad \text{Or use In.} \quad \ln 3^{2x-10} = \ln 5$ $(2x - 10) \log 3 = \log 5$ $(2x - 10) \frac{\log 3}{\log 3} = \frac{\log 5}{\log 3}$ $2x - 10 = \frac{\log 5}{\log 3}$ $2x = 10 + \frac{\log 5}{\log 3}$ $\frac{2x}{2} = \frac{10 + \frac{\log 5}{\log 3}}{2}$ $x = 5 + \frac{\log 5}{2\log 3}$ Use the calculator to get an estimate. $x \approx 5.7324$

5. An equation that has two logarithms with equivalent bases on the same side need to be combined into one log using the properties of logarithms.
 Example: ln x + ln x² = 3 ↔ ln x ⋅ x² = 3

ample:
$$\ln x + \ln x^2 = 3 \iff \ln x \cdot x^2 = 3$$

$$\ln x^{3} = 3$$

$$e^{\ln x^{3}} = e^{3}$$

$$x^{3} = e^{3}$$

$$(x^{3})^{\frac{1}{3}} = (e^{3})^{\frac{1}{3}}$$

$$x = e$$
Option: Use property of inverses.